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Introduction
Understanding the impacts of the decisions we make in complex systems

like agricultural supply chains is very difficult. Agricultural supply chains are
best described as interconnected systems within systems, or metasystems.
They are characterized by feedback and feedforward information flow that
changes rapidly, with non-linear and difficult to predict outcomes. The global
scope of the agricultural supply chain amplifies this complexity.
In spite of this complexity the demand for food supply chain transparency
across social networks is increasing. Food system brands are being held
responsible for consequences of decisions multiple steps above their direct
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control. Agricultural producers are being asked to report on regional and
national environmental impacts of their production practices. These demands
are driving the need for coherent, consistent, and defendable assessment
methodologies for local-to-global environmental impacts across the entire
agricultural supply chain.

Life cycle assessment (LCA) is one of the tools being used to assess
impacts across environmental, social, and economic domains. The
methodologies used in LCA originated from risk assessment, reduction, and
mitigation strategies in hazardous materials management more than 40 years
ago. The concepts and methods are not new, but the applications in agriculture
have emerged over the past 25 years (Audsley et al. 1997).

Questions LCACanAnswer
The quantitative elements of LCA are effectively based on supply chain

mass and energy flow accounting linked to impact assessment models. As
such, LCA can answer questions that any accounting method can answer.
These include how much of a thing is accumulated at discrete points in the
supply chain, what impacts result from discrete inputs in the supply chain, and
what happens to the impacts if those inputs are changed.
The most common questions addressed by LCAs are related to environmental
assessment, especially environmental impacts such as global warming
potential or water embodied in a product or process. Historically LCAs were
used for process improvement to identify hot spots of environmental
discharges and risk factors such as hazardous chemical use in a process or
product life cycle. Because LCA is so powerful at defining explicit processes
and inputs that result in undesirable outputs, they are also used in policy
analysis and making to provide common benefits to society through policies
and risk mitigation. They are similarly powerful tools for strategic planning
and risk management for corporations and governments.

In order to answer a question using an LCA the question must be explicitly
composed prior to conducting the assessment. Many assumptions are made in
the LCA process that significantly influence the outcomes. Understanding why
the LCA is being conducted in the first place and which question(s) it is
designed to answer is key to effective implementation. The following sections
of this document describe the process of problem formulation, defining goals
and scopes, setting systems boundaries, defining allocation rules for multiple
system products, and identifying the impact categories that the LCAwill be
used to quantify.

Questions LCACannot Answer
While LCAs are very powerful tools for analyzing entire supply chain

systems for impacts, there are some questions LCAs cannot answer. These
include normative value decisions, ethical framing, and risk mitigation.
Normative decisions are made based upon norms, values, and morals. These
are the most important decisions humans make. The outcome of an LCA
cannot make this decision for you.

However, an LCA can be very informative in the decision process. For
example, almost all products in the supply chain have some negative impact
on human health in their life cycle. These are measured in several ways, but
the most common is disability adjusted life years (DALYs), which is a
measure of the loss of expected length of life for a person or community due
to exposure to the process or activity in the life cycle of the product. One
DALY is the loss of one year of life. This information can tell a manager what
the DALY impact of their products are across each step of the life cycle, if
substituting elements in a production process will reduce or increase the
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impact, and how one product compares with another across supply chains.
Recently, LCA is used extensively to address greenhouse gas footprints of
products along their supply chains.

This critical information from life cycle assessments and associated impact
assessments can inform these decisions, but the information does not make the
decision. Compounding this complexity is the reality that any product or
process has negative and positive impacts. Manufacturing nitrogen fertilizer
creates several negative impacts, including DALYs, greenhouse gas emissions,
eutrophication of fresh and marine waters, ocean acidification, and soil
acidification. Nitrogen fertilizers also support adequate nutrition for 7.85
billion people while leaving some land for habitat to support other life.
The decisions about the relative values of a process or product are very
complicated. These decisions are made based upon a combination of values,
ethics, and risk mitigation. The utility of LCA is in expanding our common
understanding of these myriad impacts from our decisions, and in helping
managers, policy makers, consumers, and others make more informed and
effective decisions about the things we produce and how we produce them.

Life Cycle Assessment Methods
LCA can be used to address a variety of information needs and individual

LCA studies can differ greatly depending on their purpose. It is therefore
important that organizations commissioning LCA studies—to be undertaken
internally or by an external LCA consultant—consider carefully the decision-
making context to be informed by the study as well as the intended audience.
In some cases, LCA studies can be undertaken quickly and inexpensively
where existing models are adapted using broadly representative data. The
results of such studies may be adequate to identify significant issues and guide
internal decision-making. On the other hand, where LCA studies are intended
to support public environmental statements, higher levels of data quality will
likely be required along with various completeness, sensitivity and
consistency checks. This section outlines the general approach to LCA, along
with relevant international standards and the main types of LCA studies. It is
intended to support users of LCA information and facilitate engagement with
LCA practitioners.

Methodological framework for LCA
While LCA studies may differ greatly in complexity and scope, they all

adhere to common principles and share a common methodological framework.
The International Organization for Standardization (ISO) standard 14040
describes the principles of LCA, which include:

▪ The life cycle perspective: LCA studies include upstream and
downstream processes so as to avoid reducing environmental impacts
in one life cycle stage, only to increase them in another. For food
products, LCA studies should include the upstream processes of
agricultural production and primary processing of commodities, as
well as the energy and material inputs required at each stage. Some
studies model the system only as far as the farm gate or the factory
gate; others continue all the way to consumption, recycling of
packaging and disposal of wastes. The included life cycle stages
depend entirely on what is relevant to the question at hand.

▪ A relative approach: Across the life cycle of a product, environmental
impacts can occur in many places and over long timeframes. An LCA
study uses environmental models to assess potential environmental
impacts relative to the unit of analysis or the functional unit in LCA
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terms.. This unit of analysis could be product-based, such as a t of
paddy rice, process-based, such as a hectare of land cultivated for rice
production, or function-based, such as the provision of dietary protein.
Defining the unit of analysis such that it is relevant to the question at
hand is one of the first tasks in undertaking an LCA.

▪ Transparency: Because of the complexity of modeling a life cycle,
with the various inputs and outputs and interactions with the
environment, a large number of modeling decisions are inevitably
taken by the LCA practitioner. Transparency of data sources and
modeling choices is necessary to enable reliable interpretation of
results.

▪ Comprehensiveness: In recent years, assessments of carbon footprints
and water footprints have become common in agriculture and the food
industry. These studies are valuable. However, there is always the risk
that actions to reduce one environmental impact could, without
intention, lead to higher impacts in another. For this reason, LCA
studies seek to apply a broad range of environmental models covering
as many relevant environmental aspects as possible.

LCA studies also follow a
common methodological approach
involving four phases: goal and
scope definition, inventory analysis,
impact assessment and interpretation
(Figure 1). The inventory analysis
phase is often the most time
consuming and expensive as this is
where data is collected on resource
use and emissions at each life cycle
stage. Ideally, data is collected for the
specific system under study.
However, depending upon the goal
and scope, data from LCA databases
can also be used. The impact
assessment phase is where
environmental models are used to

evaluate the significance of the resource use and emissions compiled in the
inventory phase. Here, it is important to note that there is a wide variety of
impact assessment models to choose from and new and improved models are
being developed continually. To assist industry, the Life Cycle Initiative, a
global collaboration under the auspices of the United Nations, periodically
makes recommendations about best practice impact assessment models
(https://www.lifecycleinitiative.org/).

The LCA approach is iterative whereby outputs from one phase informs
the next. However, insights obtained in later phases may also point to the need
to revisit earlier work. For example, impact assessment may indicate that
certain inventory flows are more important than originally thought, justifying
additional effort in obtaining more accurate inventory data.

International standards
To support the use of LCA in reliable and responsible ways, the

International Organization for Standardization has developed a variety of
standards covering the discipline. These include:

▪ ISO 14040:2006 describes LCA principles and methodological
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Figure 1. The four phases of an LCA study.
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framework
▪ ISO 14044: 2006 describes specific methodological and reporting

requirements as well as requirements for critical review
▪ ISO 14046: 2014 concerns water footprint calculations
▪ ISO 14067: 2018 concerns product carbon footprint calculations
▪ ISO 14044 Amendment 1: 2017 expands the scope of 14044 to cover

all footprints
▪ ISO 14071: 2014 provides additional coverage of LCA critical review

processes
▪ ISO 14072: 2014 extends the application of LCA to organizations
In addition, there are ISO standards that address the communication of

LCA-based information in the form of environmental claims, labels and
declarations. These documents play an important role in protecting businesses
and consumers from misleading environmental information and they are used
in some countries to support consumer and competition laws.

Types of LCA studies
Most LCA and footprint studies adopt the so-called attributional approach

whereby inputs and outputs of resources and emissions are compiled along the
supple chain of a product and evaluated based on historical records. For
agricultural production, where there can be considerable variability from crop
to crop, data is usually used that covers a few recent seasons.

LCA studies can also take a consequential or change-oriented approach
where marginal data is used to characterize what is expected to be the change
in environmentally relevant physical flows arising from a decision. For
example, when a process increases demand for electricity, the marginal
electricity generator is studied, which may have a different environmental
profile compared to generators supplying the base load. Ekvall (2020) offers
an informative discussion of the differences between the attributional and
consequential approaches.

Sometimes, LCA studies are designed to directly compare two different
production systems or products. This is termed a comparative LCA. In such
cases it is essential that all relevant stages of the life cycles are included and
that equivalent methods are applied. This is easier to achieve when comparing
two similar products from the same organization. However, it can be a
challenge when comparing two products that might provide a similar function
(e.g., a paper towel and an electric hand dryer) which involve very different
industries.

Life Cycle Assessment of Agricultural Supply Chains
Even though LCA is not a cure-all for environmental issues, it is a tool

that, if correctly and completely used, can logically and methodically
examines environmental impacts for specific products, processes, systems, and
even entire supply chains. To properly conduct a life cycle assessment will
entail four core activities, including: (1) defining the goal and scope of the
study, (2) life cycle inventory, (3) life cycle impact assessment, and (4)
interpretation. This section will specifically discuss the first component of this
framework.

Defining Goal and Scope
The first stage to pursuing a life cycle assessment study is to define the

goal and scope of the study. There are many issues to consider here, and
clearly defining what to investigate, why, and how you are going to do it is
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critical to successfully bringing an LCA to a meaningful conclusion. It is
particularly important to unambiguously state the intended application for the
LCA, the reasons for carrying out the study, the intended audience, the
functional units, system boundaries, allocation rules, data sources, and clearly
defining the methodologies to be used.
Some examples of goals for an LCAmay include:

▪ To support broad environmental and sustainability assessments by an
organization

▪ To establish baseline information for a product, process, or system
▪ To rank the relative contributions of individual steps or processes in

the supply chain vis-à-vis environmental impacts
▪ To identify gaps in understanding or data
▪ To help guide product and process development to achieve

environmental impact targets
▪ To provide information and direction to decision-makers / management
After setting the goals for the study, clearly defining the scope is crucial

step in LCA. All environmental impact categories (i.e., performance
indicators) that will be used should be determined here, as well as any
calculation methods which will be used to quantify them. Often the
environmental impacts of the study will relate back to the LCA goals which
have been established. Scope items must also include what portion of the
supply chain will be analyzed, the functional unit to be used (so that all
environmental impacts have a common metric for reporting), system
boundaries, primary and secondary data to be modeled, estimated, and/or
collected, how these data will be validated and used for calculations, any
assumptions that might be used in the study—especially as these relate to the
boundaries and data. The procedures that will be used to allocate
environmental impacts must also be defined at this stage. Furthermore,
acknowledging the limitations of the LCA should be done, as this will help
readers understand the applicability of the results. Any other items that may
impact the approach, application, and results should be discussed at the outset
as well.

Defining Functional Units
For the sake of consistency throughout the study, as part of the Goal and

Scope definition stage, it is important to unambiguously state what the
functional units for the study will be. In other words, on what common basis
(i.e., denominator) will you report the environmental impacts/indicators.
Depending upon the goals, this functional unit may be an upstream input, or
more often, will be a downstream output of the system under study.
There are three types of functional units that are commonly used for LCA
studies: mass (kilogram, pound, ton, etc.—which has traditionally been used),
energy content (MJ, BTU—often used for fuel studies and other combustible
products), and economic value (dollar, Euro, yen, pound, etc.—which is often
used when multiple products have vastly differing monetary values [e.g., meat
vs. rendered co-products]).
Some examples of mass functional units for an LCA study could include:

▪ Beverage manufacturing— bottling 355 mL (12 oz.) of a beverage (an
output)

▪ Aluminum ingots for can production— 1 kg aluminum (an input)
▪ Biofuel fermentation— producing 1 gal bio-based ethanol (an output)
▪ Corn grain for ethanol processing—1 kg corn (an input)
▪ Wood production— producing 1 m3 of plywood (an output)

After setting the
goals for the
study, clearly
defining the
scope is crucial
step in LCA.
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▪ Wood transported into the lumber mill— 1 m3 of pine tree (an input)
▪ Food manufacturing—1 kg of candy (an output)
▪ Chocolate for candy production—1 kg of cacao beans (an input)

Establishing the functional unit or units to be used at this stage is critical as
this will allow comparability amongst all subsequent LCA results, will allow
comparisons with other LCA studies and publications, and will also allow for
systematically relating system inputs to outputs.

Defining System Boundaries
Defining the system boundary within which the user will be working as he

or she conducts
an LCA is
another key
aspect of
establishing the
Goal and Scope
of the project.
This is
important
because it will
help ascertain
what stages or
activities to be
included in an
LCA a person
will conduct
mass and energy
balances into
and out of the
system.
Sometimes the
boundaries will
be selected for
convenience;
other times the
boundaries will
be defined due
to constraints of
the study. Either
way, boundary
definition
should be
directly tied to
the goals that
want to be
achieved by the
LCA. Examples
of system
boundaries are
shown for an
LCA of a farm

field, for modeling both water flow and gaseous emission flow (Figures 2 and
3). Figure 3 illustrates how the control volumes can then be used to establish
the flows of mass and energy into and out of the field system. Note that in the
case of this farm system, the LCA is concerned with flows which occur near

Figure 3. Example control volume for assessing net GHG flows
into/out of a field system.

Defining the
system boundary,
or control
volume, within
which the user
will be working
as he or she
conducts an LCA
is another key
aspect of
establishing the
Goal and Scope
of the project.

System
boundaries can
be established
for any portion
of a supply
chain, such as a
factory, a
household, or
even the entire
supply chain.

Figure 2. Example control volume for assessing net water flows
into/out of a field system.
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the soil/atmosphere interface.
System boundaries can be established for any portion of a supply chain, such
as a factory, a household, or even the entire supply chain, as shown in Figure
4. Depending upon goals and scope of the study, the portion of the supply
chain which is analyzed will lead to differing results. If the LCA considers the
full supply chain, the boundary would be considered cradle-to-grave. This is
the most comprehensive approach to setting system boundaries. Many LCA
studies concern raw commodity production activities on the farm only, and
end at the farm gate. This type of scenario would also be appropriate for all
raw production-type studies, including fisheries, mining, etc. An LCAwhich
has boundaries from the farm to the factory would be considered cradle-to-

plant gate. This type of LCA could be used to help identify issues on the
upstream side of the supply chain. From the factory to end of life would be
considered a gate-to-grave LCA. Use-to-grave would entail consumer use and
end of life activities. These types of LCAs focus on the downstream side of
products.

Defining Allocation Rules
During the Goal and Scope stage, it is also important to decide how the

net environmental emissions and impacts (which are determined at a later
stage of the LCAmethodology) will be allocated. If there is only one product
being produced, then all impacts will be assigned to that product. If, however,
there are multiple products (e.g., ethanol, compressed CO2, and distiller's

Many LCA
studies concern
raw commodity
production
activities on the
farm only, and
end at the farm
gate.

An LCAwhich
has boundaries
from the farm to
the factory would
be considered
cradle-to-plant
gate.

During the Goal
and Scope stage,
it is also
important to
decide how the
net
environmental
emissions and
impacts (which
are determined at
a later stage of
the LCA
methodology)
will be allocated.

Figure 4. Establishing a logical system boundary/control volume is an important step to
identifying and quantifying the net flows into/out of a system – in this case water and
greenhouse gas flows in a field.
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dried grains with solubles [DDGS] in the case of corn ethanol manufacturing;
steaks, roasts, spareribs, meat and bone meal, blood meal, hide leather, etc. in
the case of beef processing) then it will be important to decide how the
environmental impacts will be allocated, or subdivided, among the various
products which are being produced. This allocation is typically done using a

weighted average approach. If a person is using mass-based functional units,
then a mass-basis for allocating impacts may be used; if a person is using an
energy basis, then subdividing the impacts according to energy content of the
products may be used; if a person is using economic value as a functional
unit, then it would make sense to allocate according to the value of each
product leaving the system boundary.

Data Quality
At the outset of an LCA, it must be decided as to whether existing

software will be used for the analysis (there are many available for use—some
more expensive than others), or if the user will build their own LCA based on
either collecting primary data or using secondary sources (i.e., published
literature or databases). Whichever approach is used, the following issues
should be considered for the data sets that will be utilized to estimate
environmental impacts. These include the completeness of information for the
products and processes in your study, the accuracy of measurements, precision
with which they were measured, how the data were acquired, the timeliness of
the data (which can be affected by technology and efficiency evolutions over
time) and impacts that geography may have on the system. It is also important
to consider how to incorporate data distributions in the LCA estimations, as
all of these aforementioned issues will impact mass and energy flows as well
as consequent environmental impacts, and what level of certainty (or
probability) will encapsulate your computed results.

As with all other aspects of LCA the first stage is iterative in nature and
will likely change and become more refined after the project is begun, and
data availability (or lack thereof) becomes apparent, as well as alterations in
management goals and timelines occur.

Life Cycle Inventory
Life cycle inventory (LCI) data collection is the second phase of an LCA,

following the ISO 14044 standard. This phase of LCA is generally the most

Figure 5. Example of entire supply chain for a food product, and some common types of
system boundaries that might be used for LCA.
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time intensive because of the large data requirements needed to perform an
LCA. Broadly there are two classes of lifecycle assessment: (1) bottom-up or
process-based LCA and (2) top-down or input-output (I/O) LCA. Both classes
of LCA are built on the concept of unit processes which represent the
fundamental building block of the system being simulated. One can envision
model representing the production of a good or provision of a service to entail
numerous activities working in concert or sequence to provide the functional
unit of the study. Each of these individual connected activities are known as
unit processes in the jargon of LCA.

Unit Process Characteristics
For both process and I/O models unit processes are characterized by four

types of flows:
1. Inputs: raw materials provided as outputs of other unit process
activities;
2. Extractions: extractions are a special type of input flow directly
from nature (such as well water);
3. Outputs: the goods or services which need the unit process and may
be either directly consumed or used as an input to another process;
4. Emissions: a special type of output flow directly to nature (such as
carbon dioxide or nitrous oxides from combustion of fuels).

In process based LCA, a unit process will ideally satisfy material and
energy balance requirements so that a full accounting of the activity’s impact
is available. Unit processes can represent quite simple or very complex
activities, and the scale is frequently a function of data availability. For
example, the process of pasteurization for milk processing could be a distinct
unit process in a system within a milk processing plant, or the entire
processing facility could be considered as a single activity.

For I/O LCA unit processes are built from an inventory of economic
activity associated with the production of a good or service. These models are
generally constructed from national statistics and linked with data regarding
resource consumption and emissions via a wide variety of sources, including,
for example, fuel prices. These unit processes also account for consumption
and production flows as well as providing emissions estimates based on the
economic activity (e.g., calculating that purchased fuel is combusted releasing
combustion products to the atmosphere).

Process Flows
Each unit process accounts for material and energy flows through a system

of connected unit processes. Unit processes are connected in a manner such
that the output product of one unit process is frequently used as the input to
another. For example, the output of electricity from a power plant could be the
input to a unit process for a home refrigerator. These flows are generally
classified as techno-sphere flows, such as the example just given, and
elementary flows which refer to the direct extraction of materials from the
environment or the emission of materials to the environment. Unit processes
are linked via their flows to construct a model of a supply chain which results
in the delivery of a specified function, defined by functional unit discussed
earlier. In LCA, practitioners categorize process flows as foreground and
background processes. Generally speaking, foreground processes refer to
activities under the direct control of the study or activities in the segment of
the supply chain of direct and primary interest of the study. Background
processes refer to activities in other parts of the supply chain, which may be
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upstream-the production of electricity at a hydropower plant, or downstream,
for example the disposal of packaging waste in a landfill or municipal
incinerator. Numerous databases of unit process inventory exist, and these are
commonly adapted to specific studies so that, for example, data regarding
electricity production or transportation does not have to be collected for every
single new lifecycle assessment study.

Data Uncertainty
There are two fundamental sources of uncertainty and lifecycle inventory

data: inherent variability and lack of knowledge. The former is a fundamental
characteristic of all systems and can be quantified through direct measurement,
like rainfall amount or temperature, or through process simulation such as crop
modeling. Generally, inherent variability cannot be significantly reduced or
eliminated by an LCA practitioner and therefore must be included in the
accounting. Lack of knowledge, of course, can be corrected by more fully
studying and characterizing the system to ensure that activities which are not
measured are somehow estimated (see data gap discussion). LCA practitioners
have developed techniques for estimating lifecycle inventory data uncertainty
based on characteristics of the data including representativeness in regards to
both temporal and geographic character, and whether the data is measured or
estimated either by expert opinion or through simulation. One common
approach for quantifying inventory uncertainty is use of Monte Carlo
simulation in which random variance from a distribution for each inventory
flow are used in a simulation leading to a distribution of impact outcomes
which can be used to evaluate robustness of conclusions.

Data Gaps
One of the consequences of the availability of multiple databases providing

background data for LCA studies is that novice practitioners are tempted to
mix unit processes from different databases as a means to fill any gaps in their
lifecycle inventory. However, this is not generally appropriate because of
database-specific characteristics regarding selection of system boundaries and
the choice of technique for modeling multi-functional unit processes. Some
databases use an economic allocation, some use mass-based allocation, while
others may adopt a consequential paradigm and use market substitution to
account for multi-functionality. Thus, the conclusions drawn from a study in
which data gaps have been filled by selection of unit processes from multiple
databases are significantly less robust. One approach to ameliorate this
difficulty is to adapt inventory from one database to harmonize with the
underlying assumptions and structure of the primary database selected for the
study.

Even with the adaptation of other databases it is extremely common for
data gaps to exist in both foreground and background unit processes. Thus, the
practitioner is challenged to find suitable surrogate, proxy, or estimated
inventory flow information. In some instances, surrogate or proxy data can be
found in existing databases that are compatible with the primary database. As a
simple example, one could select a generic process for provision of electricity
rather than a process specific to the study location; while this will provide an
adequate set of unit processes for characterization of impact, the impacts of the
portfolio of power sources (coal, oil, nuclear, solar, wind, hydroelectric) from a
specific power pool are lost. Another common approach to fill data gaps for
flows which are not readily measured, for example nitrous oxide emissions
from fertilizer application to crops, is to perform simulations of these
processes using detailed mathematical models. It is imperative in the
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interpretation of an LCA to examine the potential influence of the modeling
choices used for filling data gaps to characterize the robustness of the study’s
conclusions given the option of multiple approaches for filling data gaps.

Life Cycle Impact Assessment
Life cycle impact assessment (LCIA) converts the emissions and resource

uses into units of potential environmental impacts. For this purpose, a cause-
effect model is built. For emissions, this includes a fate and effect model. The
fate model assesses the distribution and residence time of the pollutants in
different environmental compartments (e.g., air, water, and soil). The effect
model assesses the impact of the pollutant distributed in the environment on
human health and/or ecosystem quality. An example can be a toxic emission
(e.g., a pesticide) that ends up in the soil and freshwater (fate) and leads to
adverse impact on ecosystem quality (effect). For fossil and mineral
resources, impacts are assessed as resource depletion, which account for the
fact that resource availability is limited. For land and water use, impacts
address the limited access to resource in present time (i.e. the competition for
a renewable resource leading to a reduction of natural land and water
ecosystems and potential deprivation of other human users).

Mid-point versus End-point Assessment
The impacts can be quantified on so called mid-point or end-point level.

While endpoint level quantifies all impacts as a damage towards human
health, ecosystem quality (mainly biodiversity loss) or resource depletion,
midpoint indicators quantify stressors in a common unit for a specific impact
category. Impact categories are for instance the global warming potential
(climate change impacts or “carbon footprints”), land use, water consumption,
eco-toxicity, human toxicity or respiratory health impacts (mainly from
particulate matter), and resource depletion. Midpoint categories can either
lead to only one endpoint (e.g., resource depletion to natural resources) or
multiple endpoints, such as climate change (affecting ecosystem quality and
human health). In general, endpoint assessments have higher uncertainty as it
requires additional modeling (e.g. how does climate change affect
ecosystems), but provide results that are more graspable and comparable. This
allows for better assessments of trade-offs among impact categories, since
they quantify damages to humans, ecosystem and resources. However, it has
to be noted that even though endpoints indicators have the same units for
different impact categories, the results are not always consistent. For instance,
human health impacts related to climate change are based on future models of
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Figure 6. LCIA framework connection midpoint assessments and endpoint assessments.
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future temperature increase and resulting malnutrition and spread of diseases
over the next decades, while particulate matter emissions assess lower
respiratory infections, stroke etc. based on epidemiological studies. Even with
these challenges present, endpoint indicators can be aggregated into single-
score results by normalizing and weighting steps in order to provide an overall
score for the environmental impacts, which is attractive for communication
purposes to laypersons and decision makers.

LCIA Endpoint Models
Several endpoint assessment model exists, which have a common

underlying model for some and differing ones for other impact categories.
While a common unit or human health impacts it the DALYs reported by
WHO in the global burden of disease reports, damages on ecosystem quality
and resource depletion differ. For ecosystem quality, the principle is to
quantify a potentially disappeared fraction (PDF) or potentially affected
fraction (PAF) of species resulting form the pollution or habitat loss due to
land and water use, multiplied by the duration of the effect and the volume or
area of habitat affected. Newer research has proposed to assess global species
loss, which accordingly avoids the quantification of the volume or area
affected (as it is global) and only has the units of species loss and duration.
Common endpoint methods are ReCiPe 2016 (building upon ReCiPe and eco-
indicator 99), LC-IMPACT, Impact World+ (loosely building upon Impact
2002+) and LIME3 (mainly in Japan).
Social LCIAModels

In addition to environmental impacts, life cycle sustainability assessment
(LCSA) includes assessment of economic and social impacts. Typically,
economic impacts are measured as total costs using a Life cycle costing (LCC)
approach, also known as whole-life cost or lifetime cost. This accounts for all
the costs occurring over the whole life cycle, typically calculating net present
costs of a product or service by applying discount rates. Social impacts are
generally addressed through work hours required from and work conditions
present in each process of the life cycle. Work hours are the inventory flow,
while the work conditions are used to characterize the results.

Interpreting LCIAResults
Since interpretation of the LCIA results is of key importance for three

reasons: (1) LCIA results are usually the main results for communication, (2) it
allows to identify the important processes and flows that contribute to the
impacts, and (3) the information on the contributions to overall results help to
advance the analysis, since important flows can be investigated in detail and
improved to enhance the robustness of the LCA.

When analyzing LCIA results at the midpoint level, typically 10–20 impact
categories are covered separately. It is therefore important to assess trade-offs,
since often comparison of products or product systems are not ranked
unanimously among all impact categories. In general, the decision context and
priorities of impact categories provide a guidance to the relevance of impact
categories, which is a normative choice. There is normalization and weighting
schemes to aggregate midpoint results to a single score, in which case default
normative choices are made. Other options to interpret the multi-dimensional
results is through multi-criteria decision analysis (MCDA), which is not
commonly done.

When analyzing endpoint results, the impacts are aggregated as damages to
human health ecosystem quality and natural resources, which allows more
direct discussions of safeguard objects. For instance, a decision maker might
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want to give higher weights to human health than natural resource depletion or
ecosystem quality. Commonly, endpoint methods also include normalization
and weighting that aggregates the results to an overall score.
In any case, it is important to avoid just reporting one result like a single score
or a single impact category result, since the main purpose of an LCA is not a
single result, but an understanding of the system analyzed, including which
processes, and what emissions and resource uses are important for
environmental impacts. Therefore, trade-offs should be explicitly discussed to
identify problem shifting (e.g., from climate change to land use impacts, when
switching from fossil to bio-based fuels).

Research Needs in Life Cycle Assessment
Big Data Integration into LCI

"Big data" is a ubiquitous term getting popular since 2011 (Xu, Cai, and
Liang 2015). Although big data definitions have evolved rapidly, big data often
refers to large collections of variable data that require advanced techniques to
capture, process, and analyze (Gandomi and Haider 2015). Big data analytics,
the process of using big data to support decision-making, have been used to fill
LCI data gaps and characterize uncertainties. Previous studies estimated LCI
data of chemical manufacturing by mining large, open-access, environmental
datasets (Cashman et al. 2016; Meyer, Cashman, and Gaglione 2020). Other
studies used literature datasets to train machine learning models to estimate the
LCI of chemicals (Wernet et al. 2008) and biomass-derived materials (Liao,
Kelley, and Yao 2019). In addition to LCI modeling, big data has been used to
characterize dynamics and uncertainties associated with human behavior, such
as travel patterns for transportation LCA (Cai and Xu 2013) or farmers'
decisions on crop selection and fertilizer usage for agriculture LCA (Lan and
Yao 2019).

It is necessary to build data capacity for broader applications of big data
analytics in LCA. Open-access, centralized LCI data repositories such as the
Federal LCACommons (https://www.lcacommons.gov/) provides a platform to
share and disseminate diverse datasets useful to LCI and LCIAmodeling.
However, submissions to data repositories are not required by most academic
journals. Tremendous LCI data are still buried in LCA publications. Open data
has been a trend across different disciplines, a culture shift towards better data
sharing and transparency is needed in the LCA community. In addition, recent
development in information technology and artificial intelligence offer new
opportunities to ease and automate data collection and analytic process (Liao
and Yao 2021). For instance, IOT (Internet of Things) have received increasing
interest in agriculture, and some environmental data collected by IOT devices
could support high-resolution LCI modeling across different temporal and
geographic scales (Tzounis et al. 2017). Successful applications of those
emerging technologies will need more exploration and case studies for real-
world demonstration.

Advanced Greenhouse Gas Inventory Assessment
The majority GHG emissions from the U.S. agriculture sector are methane

and nitrous oxide (U.S. EPA 2020). Methane is mostly generated during enteric
fermentation and manure management, and nitrous oxide mainly comes from
agriculture soil management. Thus, estimating these two types of GHG
emissions is critical to food and agriculture LCA.
Enteric methane emissions are often estimated as a fraction of the gross energy
intake using a generic approach developed by the Intergovernmental Panel on
Climate Change (IPCC) (IPCC 2014). However, prior research indicates large
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variations of enteric methane emissions caused by different diets and animal
characteristics (van Lingen et al. 2019). Advanced prediction models have
been developed to estimate country-specific enteric methane emissions of
cattle, such as models for the United States (Kebreab et al. 2008) and Australia
(Charmley et al. 2016) and models based on international evaluations across
different regions (Niu et al. 2018). Depending on the locations of the GHG
inventory assessment, different models could be used to estimate methane LCI.
The consistency and compatibility of those models will further be explored.
The IPCC provides guidelines on estimating direct nitrous oxide emissions as a
fraction of soil nitrogen input (De Klein et al. 2006) using default values
derived from a global dataset that contains more than 800 observations
(Bouwman, Boumans, and Batjes 2002). Recent research have focused on
developing country- and region-specific nitrous oxide emissions by
considering spatial dynamics related to soil and climate conditions, farm
management practices, and nitrogen sources (Liang et al. 2020, Shepherd et al.
2015; Buckingham et al. 2014). For accurate LCI data of nitrous oxide
emissions, efforts are needed for nation-wide, region-specific data collection,
emission monitoring, verification, and inventory assessment (Ogle et al. 2020).

Another significant GHG emission source is land-use change (Pan et al.
2011). Quantifying the land-use change GHG emissions in agriculture LCA
could be challenging, mostly due to the lack of LCI data. Common methods
for estimating soil carbon dynamics caused by land use change include the use
of emission factors from literature, carbon balance models, dynamic crop-
climate-soil models, or direct measurement, which have increased certainty but
decreased applicability (Goglio et al. 2015). Consensus has not been made on
the procedure of quantifying GHG fluxes of land use change in LCA, but some
recommendations on standardizing land use elementary flows (Koellner et al.
2013) and using process-based, spatially explicit, and dynamic models are
promising (Schmidinger and Stehfest 2012; Hörtenhuber et al. 2014).

Geospatial Data Analysis in LCA
The environmental impact of agriculture systems often varies in different

locations due to differences in local practices, energy and material supplies,
and environmental conditions. Acquiring regionalized LCI data is challenging,
therefore aggregated (e.g., market or country-wide average) or technology-
representative LCI are often used (Hellweg and Milà i Canals 2014). Recent
efforts include using extrapolation to estimate regionalized LCI data (Canals et
al. 2011), using farm-related geospatial data (Cooper and Cooper 2015),
leveraging process-based farm models (Romeiko et al. 2020) and Geographic
Information Systems (GIS) (Reinhard, Zah, and Hilty 2017), and using
spatially explicit models for land use change and ecosystem services (Chaplin-
Kramer et al. 2017). Regionalized LCIAmethods have also been developed as
many impact categories (e.g., eutrophication) are location-dependent, such as
TRACI for the United States (Bare 2011), and LC-IMPACT with high
resolution of spatial details (Verones et al. 2020).

Recent discussions revealed the challenges in linking LCI and LCIA given
the differences in geospatial scales, practical barriers in implementing high-
resolution geospatial analysis in LCA software, and the lack of standards to
ensure the comparability, reproducibility, and transparency of regionalized
LCA (Frischknecht et al. 2019). Possible solutions include the use of
standardized formats to facilitate transparent and consistent documentation of
regionalized data and metadata and support the direct match of regionalized
LCI and LCIAmethods (Pfister, Oberschelp, and Sonderegger 2020). Other
strategies include prioritizing the future research and development of regional
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LCI and having validity and uncertainty check for regionalized LCIAmethods
(Mutel et al. 2019).

Advanced Uncertainty Analysis in LCA
Uncertainty analysis quantifies the uncertainties of LCA results and

provides a level of likelihood and confidence in LCA results (Mendoza Beltran
et al. 2018). Uncertainty in LCA includes parameter, scenario, and model
uncertainty. Parameter uncertainty is typically associated with the data of
process inputs and outputs or technical features (Lloyd and Ries 2007).
Scenario uncertainty is caused by different modeling choices (e.g., functional
units and allocation methods) (Ziyadi and Al-Qadi 2019). Model uncertainty is
related to models for developing LCI data or characterization factors for LCIA
(Lloyd and Ries 2007).
Monte Carlo (MC) is the most popular approach for uncertainty analysis in
LCA (Heĳungs 2020). MC is sampling-based and needs explicit probability
distribution of each uncertain parameter with an assumption that those
parameters are independent of each other. MC has been mostly used for
parameter uncertainty (Bamber et al. 2020). Many LCI databases like
EcoInvent provide probability distribution information, and most LCA
software is capable of running MC simulations, although the computational
speed is a concern given the large number of iterations needed (e.g., 1,000 to
10,000 times). Recent development includes applying other faster and more
accurate sampling methods (e.g., latin hypercube and quasi-Monte Carlo)
(Groen et al. 2014) and developing new techniques to account for
dependencies and correlations among parameters (Wei et al. 2015; Lesage et al.
2018; Groen and Heĳungs 2017). Scenario and model uncertainty are more
challenging than parameter uncertainty. Researchers have used discrete choice
analysis and scenario analysis to simulate each combination of modeling
choices (van Zelm and Huĳbregts 2013) or used sensitivity analysis to quantify
the impacts of modeling decisions (Bamber et al. 2020). Most LCA studies
with uncertainty analysis focus on parameter uncertainty and only a few
studies simultaneously modeled all three types of uncertainties. (Ziyadi and Al-
Qadi 2019; van Zelm and Huĳbregts 2013).
Given the diverse sources of uncertainty and a large variety of uncertainty
analysis methods, consensus and standardization are needed to guide the
uncertainty identification and method selection. Such guidance may need to be
developed for different sectors and types of LCAs, because recent studies
indicate the inherent differences of uncertainty sources among various sectors
(e.g., transportation versus agriculture) and different types of LCA (e.g.,
attributional LCA and consequential LCA) (Bamber et al. 2020). For the food
and agriculture sector, a common uncertainty source is farm characteristics
driven by geographic and temporal factors (Yang, Tao, and Suh 2018).
Geospatial analysis (Mutel, Pfister, and Hellweg 2012) and dynamic modeling
approaches (Lan et al. 2020) could help address those uncertainties unique to
agriculture LCA.
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