

RNA INTERFERENCE IN AGRICULTURE: METHODS, APPLICATIONS, AND GOVERNANCE

Chairs

Ana M. Vélez Arango

Associate Professor, Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE

Kenneth Narva

Head of Entomology, GreenLight Biosciences, Inc., Durham, NC

CAST Quick Facts

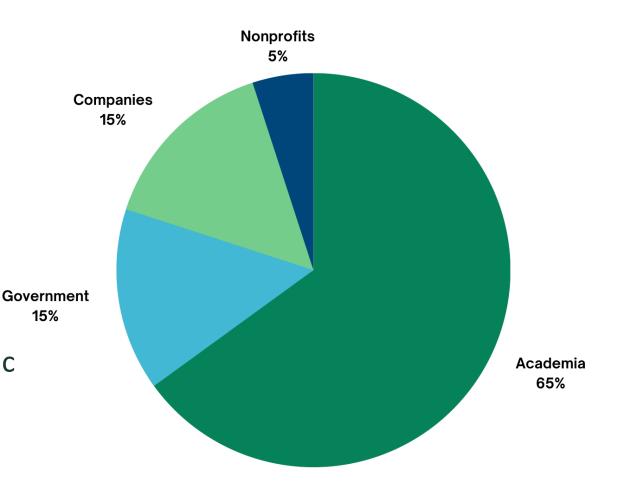
- 501(c)3 membership-supported nonprofit
- Formed in 1972 as a result of 1970 National Academy of Sciences Report
- Nonpartisan and apolitical
- Membership includes 27 scientific societies; 20 universities; 19 libraries; 45 nonprofits; 21 companies; and over 500 individuals from 46 states and 7 countries
- Celebrated its 50th anniversary in 2022

The Science Source for Food, Agricultural, and Environmental Issues

Mission

CAST convenes and coordinates networks of experts to assemble, interpret, and communicate credible, unbiased, science-based information to policymakers, the media, the private sector, and the public.

Vision


A world where decision making related to agriculture, food, and natural resources is based on credible information developed through reason, science, and consensus building.

How CAST Accomplishes Its Mission

With the help of many volunteer contributors:

- 65 Board Members representing scientific societies, companies, nonprofits, and universities
- Nearly 200 active task force members working on CAST reports yet to be released
- Volunteer scientific experts as authors and reviewers—more than 1800 volunteers since 2008

NC STATE College of Agriculture and Life Sciences

RNA INTERFERENCE IN AGRICULTURE: METHODS, APPLICATIONS, AND GOVERNANCE

Chairs

Ana M. Vélez Arango

Associate Professor, Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE

Kenneth Narva

Head of Entomology, GreenLight Biosciences, Inc., Durham, NC

Authors

Molly Darlington

Postdoctoral Research Associate University of Nebraska-Lincoln Lincoln, NE

Keerti S. Rathore

Professor Texas A&M University College Station, TX

CAST Liaison

Carroll Mosley

Head of State Regulatory Affairs Syngenta High Point, NC

Reviewers

David Baltensperger

Professor Texas A&M University College Station, TX

Raymond Dobert Senior Policy Manager Bayer

St Louis, MO

Juan Luis Jurat-Fuentes

Professor University of Tennessee Knoxville, TN

Guy Smagghe

Professor Department of Plants and Crops, Ghent University Ghent, Belgium

Amanda Pierce

Environmental Protection Agency

Senior Advisor

Washington, DC

Karl-Heinz Kogel

Professor Justus-Liebig-Universität Gießen Gießen, Hesse, Germany

Steve Whyard

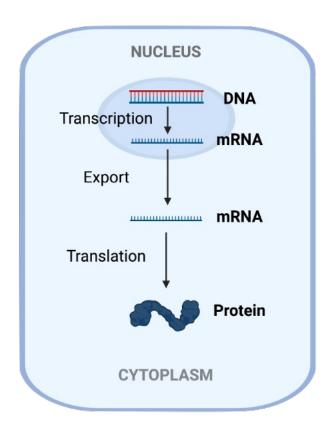
Professor University of Manitoba Winnipeg, Manitoba

Wiebke Striegel

Senior Scientist Environmental Protection Agency Washington, DC

Blair Siegfried

Associate Dean for Research and Graduate Education Penn State University University Park, PA



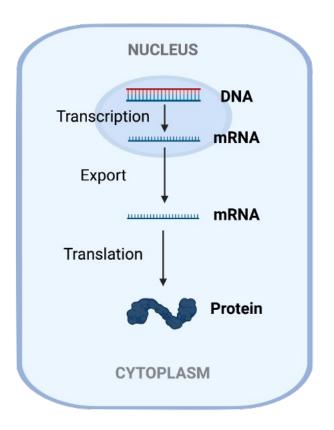
Outline

- What is RNAi?
- Role of RNAi in Agriculture
- Applications
- Regulatory Considerations
- Products
- Challenges
- Future Innovations

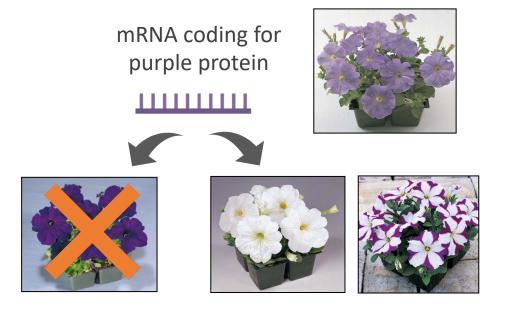
Central Dogma of Molecular Biology

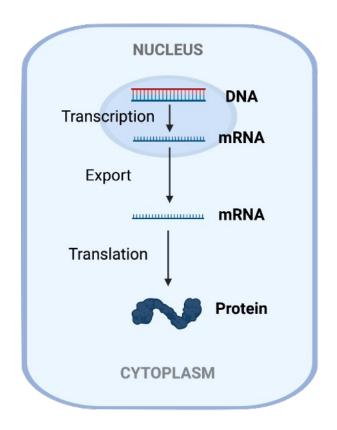
RNA Interference Discovery

Petunias transformed to over-express the enzyme associated with purple pigmentation


mRNA coding for purple protein

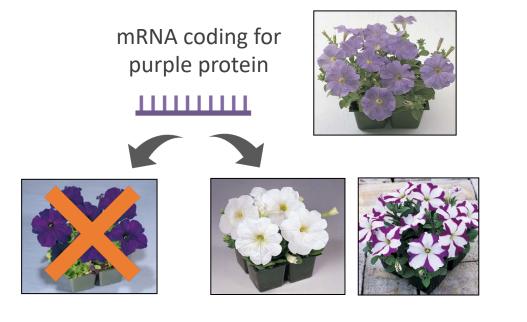
Credits (Richard Jorgensen): University of Arizona

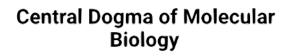

Central Dogma of Molecular Biology

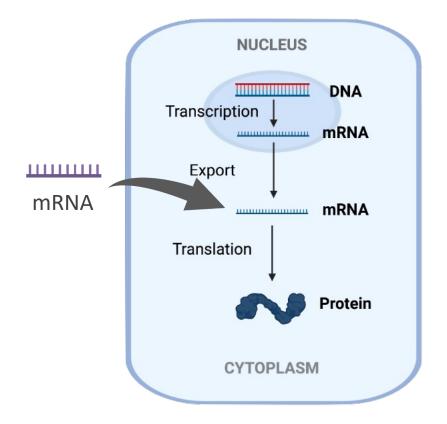

RNA Interference Discovery

Petunias transformed to over-express the enzyme associated with purple pigmentation

Credits (Richard Jorgensen): University of Arizona

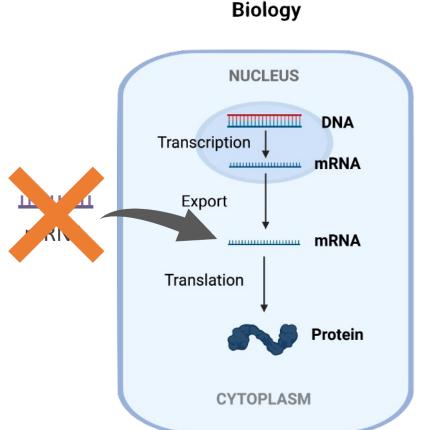

Central Dogma of Molecular Biology




RNA Interference Discovery

Petunias transformed to over-express the enzyme associated with purple pigmentation

Credits (Richard Jorgensen): University of Arizona



RNA Interference Discovery

Petunias transformed to over-express the enzyme associated with purple pigmentation

<image>

Credits (Richard Jorgensen): University of Arizona

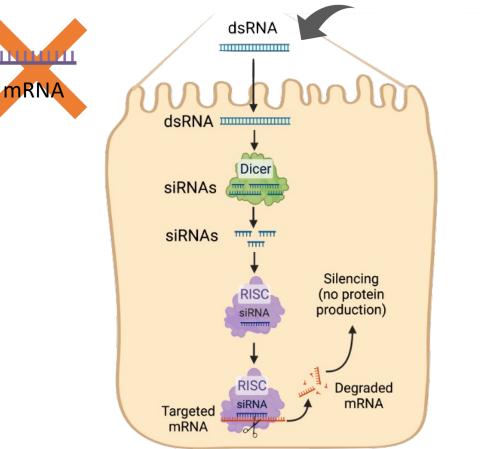
Central Dogma of Molecular

RNA Interference Discovery

Roundworm, Caenorhabditis elegans

Andrew Fire Craig Melo Nobel Prize in Physiology and Medicine in 2006

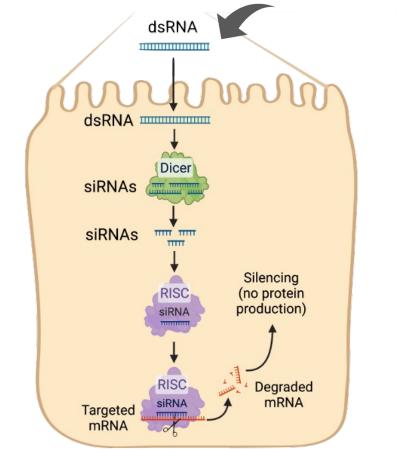
RNA Interference Discovery



Roundworm, Caenorhabditis elegans

Andrew Fire Craig Melo Nobel Prize in Physiology and Medicine in 2006

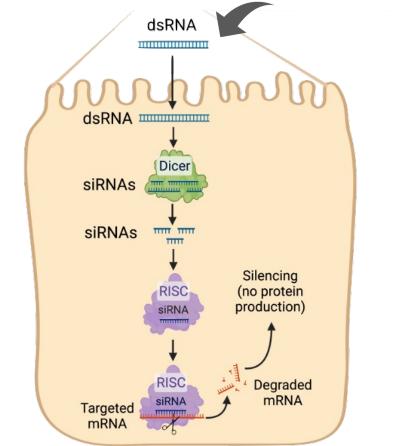
Post-transcriptional gene silencing mechanism



RNA Interference Discovery

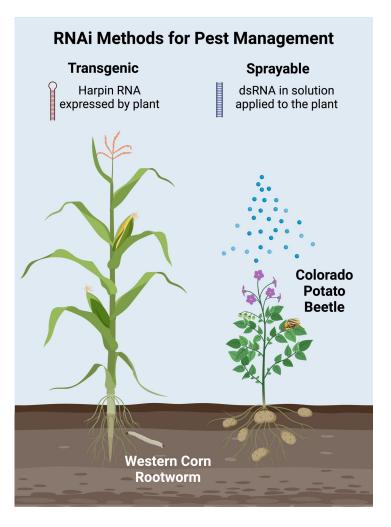
- dsRNA leads mRNA degradation that prevents protein formation → gene silencing
- Innate mechanism conserved in eukaryotes
 - Gene regulation
 - Defense against virus

Post-transcriptional gene silencing mechanism



Concepts

- **RNAi** \rightarrow mechanism
- dsRNA → molecule entering the cell
- siRNA \rightarrow active molecule
- Gene silencing or knockdown → result (no protein production)



Crop protection against insect pests and pathogens

Knockdown genes important for the organism to function with dsRNA

Lethal or sublethal effects

Crop protection against insect pests and pathogens

Advantages

- New Mode of Action (MoA)
 - IRAC Group 35 sprayable insecticide
- Reduce reliance on synthetic chemistries
- Highly specific biopesticide
- Low environmental persistence
- Low residue on crops

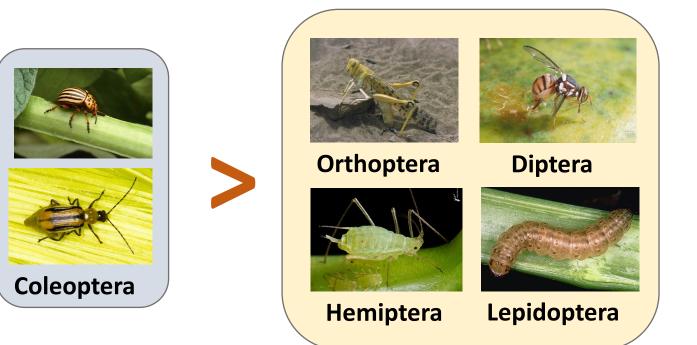
Crop protection against insect pests and pathogens

Advantages

- New Mode of Action (MoA)
 - IRAC Group 35 sprayable insecticide
- Reduce reliance on synthetic chemistries
- Highly specific biopesticide
- Low environmental persistence
- Low residue on crops

Disadvantages

- Variability in response between organisms
- Slower acting compared to synthetic chemistries
- Narrow activity spectrum

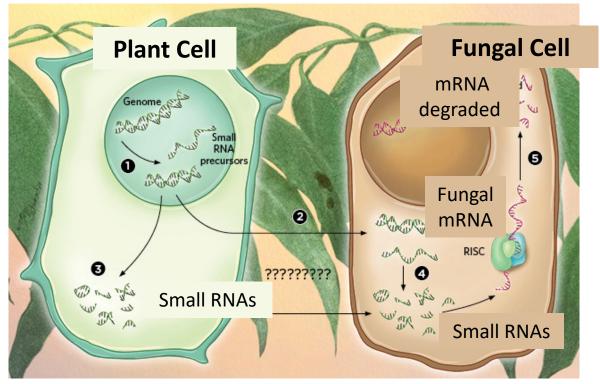


Crop protection against insect pests and pathogens

Variability in the response between insects

- Orders
- Species
- Life stages
- Tissues
- Genes

Christiaens et al. 2020. Frontiers in Plant Sciences, 11: 451



Crop protection against insect pests and pathogens

Variability in the response between fungi

- Cross-kingdom RNAi
 - Unclear if dsRNA uptake is common

Weiberg et al. 2013. Science, 342:118–123.

Grens. 2017. The Scientists.

Applications: Genetically Modified Crop

(-) dsRNA

GM corn roots protected by dsRNA targeting corn rootworm

(+) dsRNA

Baum *et al.* 2007. *Nat Biotechnol.,* 25:1322–1326.

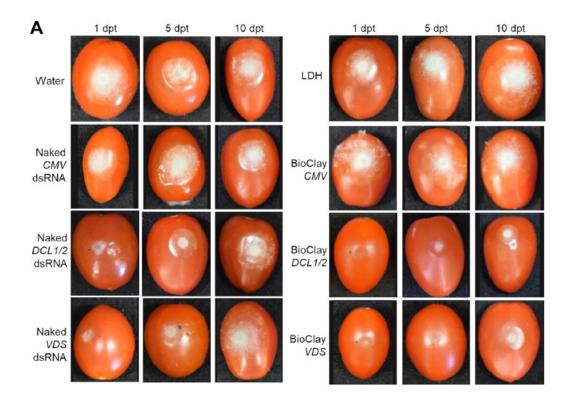
Applications: Sprayable dsRNA Biopesticide

Potato plants protected by dsRNA targeting Colorado potato beetle

Untreated

Image courtesy of GreenLight Biosciences

dsRNA treated



Applications: Sprayable Biofungicide

Botrytis cinerea protection

BioClay[™] prolongs RNA interference-mediated crop protection against *Botrytis cinerea*

Niño-Sánchez *et al.* 2022. J *Integrat. Plant Biolo.* 11: 2187-2198.

Applications: Beneficial Insect Health

Protecting honeybees against Varroa mites

Delivery pouch

dsRNA is formulated into a sucrose solution and packaged into a pouch

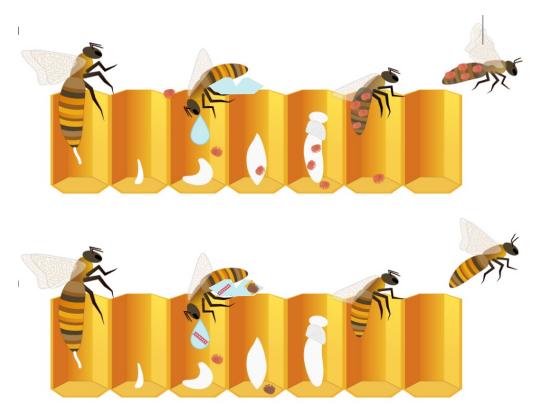
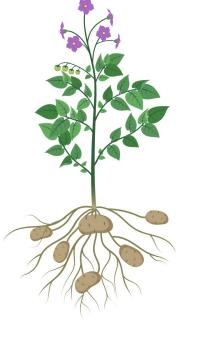


Image courtesy of GreenLight Biosciences



Applications: Beneficial Insect Health

Silencing of secondary metabolites

Potato

• Glycoalkaloids

Cotton • Gossypol

Paudel et al. 2017. MPMI, 30(11). 876-885.

Rathore et al. 2020. Crit Rev Plant Sci, 39: 1-29.

Regulatory Oversight for RNA-based Traits (PIPs) and Biopesticides

- Environmental Protection Agency (EPA): human health and environmental safety of dsRNA products
- Food and Drug Administration (FDA): safety of foods from crops containing or exposed to dsRNA
- USDA: risks to agriculture

Regulatory Considerations for PIPs and Sprayable dsRNA

Product composition and method of use factor into safety assessments

	PIPs
RNA molecule	Sequence specificityDegradation profile
Method of manufacture	• Expressed in the crop
Formulation design	Plant matrix
Application method	Expressed in crop
Product use	Insect resistance trait

Regulatory Considerations for PIPs and Sprayable dsRNA

Product composition and method of use factor into safety assessments

	PIPs	Sprayable dsRNA
RNA molecule	Sequence specificityDegradation profile	Sequence specificityDegradation profile
Method of manufacture	• Expressed in the crop	Enzymatic synthesisMicrobial expression
Formulation design	Plant matrix	• Liquids or dry formulations
Application method	Expressed in crop	• Sprays
Product use	Insect resistance trait	• Tank mix

Hazard Considerations for RNAi Products

Human Health

Sequence-specific effects

- Bioinformatics analyses
- Tiered toxicity tests

Non-sequence specific effects

- Immune responses
- Toxicity of product formulation

Environmental Safety

Sequence-specific effects

- Non-target organisms
- Bioinformatics analyses
- Tiered toxicity tests

Exposure Considerations for RNAi Products

Human Health

Dietary exposure

- Both PIPs and spray
- Humans have barriers to ingested naked RNA

Worker exposure

- Additional considerations for sprays based on product formulation and use
 - Inhalation
 - Dermal
 - Ocular

Environmental Safety

NTO exposure

- Potential for non-target organisms to be present in the crop
- Insect susceptibility to dsRNA

Products: GM Virus Control

Honeysweet plum: GM plum pox virus resistance

- Viral coat protein constructs resulted in gene silencing and resistance to virus
- EPA issued Section 3 registration on August 8, 2011

Scorza et al. 2013. Plant Cell Tiss Organ Cult, 115, 1–12

Products: Genetically Modified Corn

3 modes of action

DvSnf7 dsRNA + Cry3Bb1 + Cry34/35

- EPA Registration in June 2017
- Commercial release in 2022

Head *et al.* 2017. *Pest Mang. Sci.* 73: 1883-1899. Darlington *et al.* 2022. *Insects.* 13, 57

Products: Sprayable dsRNA

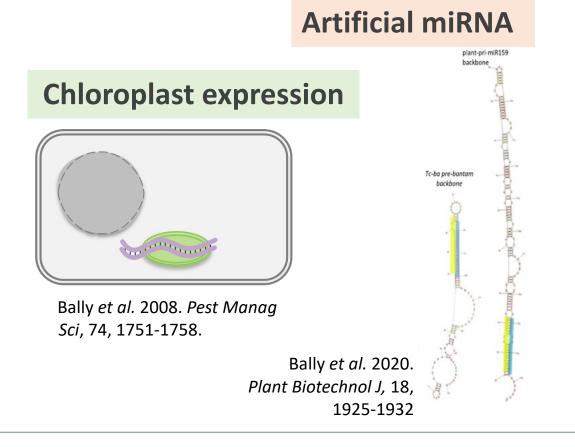
Calantha[™]

dsRNA Spray-Induced Gene Silencing for Colorado Potato Beetle

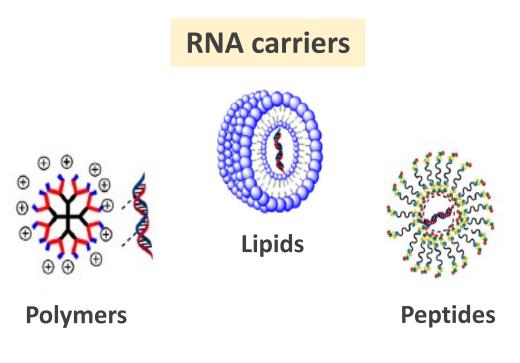
EPA Registration December 22, 2023

Pallis *et al.* 2023. *Agriculture*, 13, 2283.
Pallis *et al.* 2023. *J Econ Entomol*, 116, 456-461.
Pallis *et al.* 2022. *Pest Manag Sci*, 78, 3836-3848.
Rodrigues *et al.* 2021. *Front Plant Sci*, 12, 728652.
Rodrigues *et al.* 2021. *American Chemical Society*, pp 65-82

Challenges


• Technical challenges

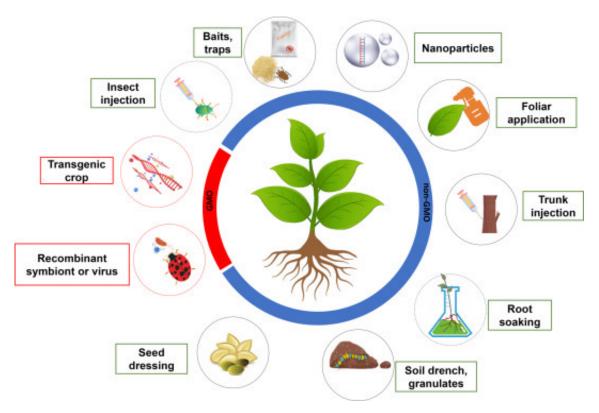
- Recalcitrant pests and pathogens
- RNA delivery
- Resistance to dsRNA
- Time and cost to develop
- Regulatory timelines and harmonization across countries
- Public perception



Future Innovation in RNAi

New transgenic methods

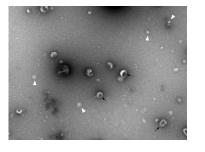
New sprayable formats



Yang et al. 2022. Front. Bioeng. Biotechnol., 10:974646.

Future Innovation in RNAi

New applications


Liu et al. 2020. Biotechnology Advances, 39: 107463.

New research

Extracellular vesicles

Non-canonical RNAi mechanisms

piRNAi Pathway

Mondal et al. 2020. Life Science Alliance. e202000731

Download Now!

The Science Source for Food, Agricultural, and Environmental Issues

Thank you for your participation!

Questions?

Developing and Adopting Economically Effective Mitigation Strategies: Critical to the Survival of Agriculture and Endangered Species

Tuesday, Jan. 30, from 12-1 p.m. CST.

Upcoming Webinars

January 30	Developing and Adopting Economically Effective Mitigation Strategies: Critical to the Survival of Agriculture and Endangered Species
February 20	FIFRA, ESA and Pesticide Consultation: Understanding and Addressing the Complexities
March 12	The topic of this webinar is the role of states in the implementation and regulation of FIFRA. Exact content will be announced later.

Become a CAST Member

Your membership dues help us to continue providing trusted scientific information to legislators, educators, and the general public.

in

 $[\mathbf{O}]$

- Individual Memberships start at **\$35/year.**
- Student Memberships are **FREE**!

Contact Us

Follow Us

Website www.cast-science.org Phone Number

515-292-2125

Email Address

cast@cast-science.org

facebook.com/CASTagScience

- twitter.com/CASTagScience
- linkedin.com/company/castagscience
- instagram.com/castagscience/